Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland
نویسندگان
چکیده
The seasonal changes in ambient mass concentrations and chemical composition of fine particulate matter (PM2.5) were investigated in three locations in Poland. The analyses included PM2.5-bound hazardous benzo(a)pyrene (BaP), As, Ni, Cd, and Pb. The samples of PM2.5 were collected daily in Katowice (southern Poland, urban background site), Gdańsk, and Diabla Góra (northern Poland, urban and regional background sites, respectively) during 1-year-long campaign in 2010. Based on monthly ambient concentrations of PM2.5-bound carbon (organic and elemental), water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-), and elements As, Ni, Cd, Pb, Ti, Al, Fe, the chemical mass closure of PM2.5 was checked for each of the four seasons of the year and for the heating and non-heating periods at each site. Also, the annual concentrations of PM2.5 were determined and the annual PM2.5 mass closure checked. At each measuring point, the PM2.5 concentrations were high compared to its Polish yearly permissible value, 25 μg/m3, and its concentrations elsewhere in Europe. The highest annual PM2.5 concentration, 43 μg/m3, occurred in Katowice; it was twice the annual PM2.5 concentration in Gdańsk, and thrice the one in Diabla Góra. The high annual averages were due to very high monthly concentrations in the heating period, which were highest in the winter. PM2.5 consisted mainly of carbonaceous matter (elemental carbon (EC) + organic matter (OM), the sum of elemental carbon, EC, and organic matter, OM; its annual mass contributions to PM2.5 were 43, 31, and 33 % in Katowice, Gdansk, and Diabla Góra, respectively), secondary inorganic aerosol (SIA), the Na_Cl group, and crustal matter (CM)-in the decreasing order of their yearly mass contributions to PM2.5. OM, EC, SIA, Na_Cl, and CM accounted for almost 81 % of the PM2.5 mass in Katowice, 74 % in Gdańsk, and 90 % in Diabla Góra. The annual average toxic metal contribution to the PM2.5 mass was not greater than 0.2 % at each site. In Katowice and Gdańsk, the yearly ambient BaP concentrations were high (15.4 and 3.2 ng/m3, respectively); in rural Diabla Góra, the concentrations of BaP were almost equal to 1 ng/m3, the Polish BaP annual limit. The great seasonal fluctuations of the shares of the component groups in PM2.5 and of the concentrations of PM2.5 and its components are due to the seasonal fluctuations of the emissions of PM and its precursors from hard and brown coal combustion for energy production, growing in a heating season, reaching maximum in winter, and decreasing in a non-heating period. In Gdańsk, northern Poland, especially in the spring and autumn, sea spray might have affected the chemical composition of PM2.5. The greatest hazard from PM2.5 occurs in Katowice, southern Poland, in winter, when very high concentrations of PM2.5 and PM2.5-related carbonaceous matter, including BaP, are maintained by poor natural ventilation in cities, weather conditions, and the highest level of industrialization in Poland. In less industrialized northern Poland, where the aeration in cities is better and rather gaseous than solid fuels are used, the health hazard from ambient PM2.5 is much lower.
منابع مشابه
Comparison of work environment air quality and application of Geostatistic technique in the Spatial distribution of PM2.5 and PM10 in a number of industrial workshops
Introduction: Air quality in industrial workshops is affected by various harmful chemical agents. purpose of this study was to compare of work environment air quality in a number of industrial workshops based on the mass concentration and number of suspended particles in air and application of Kriging geostatistical method in industries. Material and Method: This observational study was ca...
متن کاملPm2.5 Elemental Composition and Source Apportionment in a Residential Area of Wrocław, Poland
Ambient PM2.5 aerosol samples were collected from Wroclaw residential area between January and April 2009, and their elemental compositions were studied. The mean mass concentration of PM2.5 was 36±21 μg/m. Based on the variability in elemental composition of atmospheric aerosols, using principal component analysis (PCA) and multiple linear regression (MLRA), four main sources of fine particula...
متن کاملSeasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment
This study investigates the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a 1-year campaign from August 2011 to July 2012. This is the first paper on PM2.5 mass, chemical composition and sources in the tropical environment of Southeast Asia, covering all four seasons (distinguished by the wind...
متن کاملLong-term spatial and temporal variability of ambient carbon monoxide in Urmia, Iran
One of the pillars of epidemiologic research on the long-term health effects of air pollution is to estimate the chronic exposures over space and time. In this study, we aimed to measure the intra-urban ambient carbon monoxide (CO) concentrations within Urmia city in Iran, and to build a model within the geographic information system (GIS) to estimate the annual and seasonal means anywhere with...
متن کاملQuantitative relationship between visibility and mass concentration of PM2.5 in Beijing.
The pollution of particulate matter less than 2.5 microm (PM2.5) is a serious environmental problem in Beijing. The annual average concentration of PM2.5 in 2001 from seasonal monitor results was more than 6 times that of the U.S. national ambient air quality standards proposed by U.S. EPA. The major contributors to mass of PM2.5 were organics, crustal elements and sulfate. The chemical composi...
متن کامل